Inexact-hessian-vector Products for Efficient Reduced-space Pde-constrained Optimization
نویسنده
چکیده
We investigate reduced-space Newton-Krylov (NK) algorithms for engineering parameter optimization problems constrained by partial-differential equations. We review reduced-space and full-space optimization algorithms, and we show that the efficiency of the reduced-space strategy can be improved significantly with inexact-Hessianvector products computed using approximate second-order adjoints. Results demonstrate that the proposed reduced-space NK algorithm has excellent scaling that makes it suitable for large-scale optimization problems. Moreover, reduced-space NK combines the attractive attributes of both reduced-space quasi-Newton methods and full-space approaches — namely, modularity, robustness, and scalibilty.
منابع مشابه
Towards Matrix-Free AD-Based Preconditioning of KKT Systems in PDE-Constrained Optimization
The presented approach aims at solving an equality constrained, finite-dimensional optimization problem, where the constraints arise from the discretization of some partial differential equation (PDE) on a given space grid. For this purpose, a stationary point of the Lagrangian is computed using Newton’s method, which requires the repeated solution of KKT systems. The proposed algorithm focuses...
متن کاملA preconditioning technique for a class of PDE-constrained optimization problems
We investigate the use of a preconditioning technique for solving linear systems of saddle point type arising from the application of an inexact Gauss–Newton scheme to PDE-constrained optimization problems with a hyperbolic constraint. The preconditioner is of block triangular form and involves diagonal perturbations of the (approximate) Hessian to insure nonsingularity and an approximate Schur...
متن کاملLossy compression for PDE-constrained optimization: adaptive error control
For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint e...
متن کاملInterior-Point Methods for PDE-Constrained Optimization
In applied sciences PDEs model an extensive variety of phenomena. Typically the final goal of simulations is a system which is optimal in a certain sense. For instance optimal control problems identify a control to steer a system towards a desired state. Inverse problems seek PDE parameters which are most consistent with measurements. In these optimization problems PDEs appear as equality const...
متن کاملA Semismooth Newton-CG Method for Constrained Parameter Identification in Seismic Tomography
Seismic tomography is a technique to determine the material properties of the Earth’s subsurface based on the observation of seismograms. This can be stated as a PDE-constrained optimization problem governed by the elastic wave equation. We present a semismooth Newton-PCG method with a trust-region globalization for full-waveform seismic inversion that uses a MoreauYosida regularization to hand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013